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A proof that a discrete delta function is second-order accurate
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Abstract

It is proved that a discrete delta function introduced by Smereka [P. Smereka, The numerical approximation of a delta
function with application to level set methods, J. Comput. Phys. 211 (2006) 77–90] gives a second-order accurate quadra-
ture rule for surface integrals using values on a regular background grid. The delta function is found using a technique of
Mayo [A. Mayo, The fast solution of Poisson’s and the biharmonic equations on irregular regions, SIAM J. Numer. Anal.
21 (1984) 285–299]. It can be expressed naturally using a level set function.
� 2007 Elsevier Inc. All rights reserved.
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There is considerable interest in designing accurate discrete delta functions for surfaces in a domain covered
by a rectangular grid. They can provide quadrature rules for surface integrals using values at regular grid
points [2,10–12]. Such a rule is especially useful when the surface is represented by a level set function. In
[10] Smereka constructed a discrete delta function as the truncation error in applying the discrete Laplacian
to a ‘‘Green’s function” for the exact delta function on the surface. To find the truncation error, he used the
technique of Mayo [7,8] for solving differential equations with interfacial conditions, in which jump conditions
are built into the difference operators on a regular grid. (The immersed interface method [3,5], the EJIIM [13,9]
and the ghost fluid method [6] are related to Mayo’s technique.) Smereka also showed how to express this
delta function in terms of a level set function. He conjectured that the resulting quadrature rule for surface
integrals is second-order accurate and verified the accuracy in numerical examples. In this note we give a sim-
ple proof of this fact.

Suppose C is a closed curve in R2 or a closed surface in R3, bounding a set which is contained in a rectan-
gular domain X. The problem is to design a weight function wh at grid points on a square grid Xh, concen-
trated near C, so that, for any smooth function f defined near the curve C in R2,
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Z
C

f ðxÞdsðxÞ ¼
X
ih2Xh

f ðihÞwhðihÞh2 þOðh2Þ ð1Þ
or near the surface C in R3,
Z
C

f ðxÞdSðxÞ ¼
X
ih2Xh

f ðihÞwhðihÞh3 þOðh2Þ: ð2Þ
Arclength and surface area are special cases. Smereka’s wh has support on the grid points ih within distance h

of C, i.e., whðihÞ ¼ 0 at other points. We will prove that (2) holds, with wh as in [10], assuming C is a smooth
surface in R3. The case of a curve in R2 is entirely similar.

Smereka’s procedure is as follows: Let dC be the distribution, or generalized function, restricting to C; that
is, for smooth f on X,
Z

X
f dC dx ¼

Z
C

f dS: ð3Þ
Let g be the solution of
Dg ¼ dC in X; g ¼ 0 on oX: ð4Þ

Assuming C is smooth, g is piecewise smooth, i.e., smooth and harmonic on each region bounded by C, with
the jump conditions
½g� ¼ 0; ½ong� ¼ 1 on C; ð5Þ

where on is the normal derivative on C. In fact g can be thought of as a single layer potential on C. Now let Dh

be the usual second-order discrete Laplacian on Xh and let sh be the truncation error
Dhg ¼ sh on Xh: ð6Þ

Smereka constructs the weights wh from expressions for sh, using Mayo’s technique [7,8]. At a regular grid
point ih 2 Xh, for which the stencil of Dh does not cross C; shðihÞ ¼ Oðh2Þ as usual. At an irregular grid point,
sh is larger. It can be found to OðhÞ using the jumps in first and second derivatives of g; see (30) in [10]. These
in turn can be expressed in derivatives of the normal and tangent vectors to C. (See (41), (47) in [10] for R2 and
Section 7.2 for R3.) Thus sh has the form
Dhg ¼ sh ¼ wh þOCðhÞ þOðh2Þ on Xh; ð7Þ

where wh is known analytically and wh and OCðhÞ are nonzero only at the irregular points. The errors are uni-
form. Smereka shows how to write wh in terms of a level set function; see (45) and Section 7 in [10].

To prove that (2) is valid, we may assume f is nonzero only in a neighborhood of C, as well as smooth. We
begin by writing
Z

C
f dS ¼

Z
X

f dC dx ¼
Z

X
f Dg dx ¼

Z
X

gDf dx: ð8Þ
(This could be rewritten in an equivalent way using the jump conditions (5) rather than dC).
Next we replace the last integral by a sum over grid points. We check that
Z

X
gDf dx ¼

X
ih2Xh

gðihÞðDf ÞðihÞh3 þOðh2Þ ð9Þ
by comparing the integral over the cell centered at ih with the term in the sum. If the cell intersects C, the error
in the integrand is OðhÞ, since g is continuous and has bounded derivative. There are Oðh�2Þ such cells, con-
tributing a total error of Oðh � h3 � h�2Þ ¼ Oðh2Þ. On each remaining cell the error in the integral is Oðh2 � h3Þ,
since g and Df are C2. The total error for these cells is Oðh2 � h3 � h�3Þ ¼ Oðh2Þ and the claim (9) is verified.

We now have
Z
C

f dS ¼
X
Xh

gDfh3 þOðh2Þ ¼
X
Xh

gDhfh3 þOðh2Þ ð10Þ
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since Dhf ¼ Df þOðh2Þ. We can sum by parts and use (7) to obtain
X
Xh

gDhfh3 ¼
X
Xh

ðDhgÞfh3 ¼
X
Xh

�
wh þOCðhÞ þOðh2Þ

�
fh3: ð11Þ
The OCðhÞ error contributes a term of order h � h3 � h�2 ¼ h2 and thus is negligible, as is the other error inside.
Combining (10) and (11), we arrive at the conclusion (2).

The fact that the integral is accurate to Oðh2Þ although sh ¼ OðhÞ on the irregular points is related to a gain
in accuracy that has long been noted for solutions of elliptic problems using the methods of [3–5,7,8,13].
Proofs of this phenomenon have been given in [1,4,9] and elsewhere. Closely related to the Green’s function
g solving (4) is the discrete version gh which solves
Dhgh ¼ wh in Xh; g ¼ 0 on oXh: ð12Þ

In fact gh � g ¼ Oðh2Þ uniformly; this follows from analytical results in [1,9].
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