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Abstract

It is proved that a discrete delta function introduced by Smereka [P. Smereka, The numerical approximation of a delta
function with application to level set methods, J. Comput. Phys. 211 (2006) 77-90] gives a second-order accurate quadra-
ture rule for surface integrals using values on a regular background grid. The delta function is found using a technique of
Mayo [A. Mayo, The fast solution of Poisson’s and the biharmonic equations on irregular regions, STAM J. Numer. Anal.
21 (1984) 285-299]. It can be expressed naturally using a level set function.
© 2007 Elsevier Inc. All rights reserved.
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There is considerable interest in designing accurate discrete delta functions for surfaces in a domain covered
by a rectangular grid. They can provide quadrature rules for surface integrals using values at regular grid
points [2,10-12]. Such a rule is especially useful when the surface is represented by a level set function. In
[10] Smereka constructed a discrete delta function as the truncation error in applying the discrete Laplacian
to a “‘Green’s function” for the exact delta function on the surface. To find the truncation error, he used the
technique of Mayo [7,8] for solving differential equations with interfacial conditions, in which jump conditions
are built into the difference operators on a regular grid. (The immersed interface method [3,5], the EJIIM [13,9]
and the ghost fluid method [6] are related to Mayo’s technique.) Smereka also showed how to express this
delta function in terms of a level set function. He conjectured that the resulting quadrature rule for surface
integrals is second-order accurate and verified the accuracy in numerical examples. In this note we give a sim-
ple proof of this fact.

Suppose I’ is a closed curve in R* or a closed surface in R?, bounding a set which is contained in a rectan-
gular domain Q. The problem is to design a weight function w" at grid points on a square grid @, concen-
trated near I', so that, for any smooth function f defined near the curve I' in R?,
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/f Yds(r) = S F (i (iR + O(F) ()
theQy,
or near the surface I' in R?,
/f )dS(x) = Y f(ih)w (i) + O(R’). (2)
iheQ,,

Arclength and surface area are special cases. Smereka’s w" has support on the grid points i within distance 4
of I', i.e., w(ih) = 0 at other points. We will prove that (2) holds, with wh as in [10], assuming I' is a smooth
surface in R®. The case of a curve in R? is entirely similar.

Smereka’s procedure is as follows: Let oy be the distribution, or generalized function, restricting to I'; that
is, for smooth f on @,

/fépdx = /de. (3)
Q r
Let g be the solution of

Ag=46r inQ, g=0 on 0Q. (4)

Assuming [" is smooth, g is piecewise smooth, i.e., smooth and harmonic on each region bounded by I', with
the jump conditions

[¢]=0, [0.g]=T1onT, (5)

where 0, is the normal derivative on I'. In fact g can be thought of as a single layer potential on I'. Now let 4,
be the usual second-order discrete Laplacian on ©, and let " be the truncation error

Ag=1" on Q. (6)

Smereka constructs the weights w" from expressions for *, using Mayo s technique [7,8]. At a regular grid
point i € ,, for which the stencil of 4, does not cross I', 7" (ih) = O(h*) as usual. At an irregular grid point,
" is larger. It can be found to O(k) using the jumps in first and second derivatives of g; see (30) in [10]. These
in turn can be expressed in derivatives of the normal and tangent vectors to I'. (See (41), (47) in [10] for R* and
Section 7.2 for R®.) Thus " has the form

Mg =7"=w"+0p(h) +O(h*) on Q, (7)

where w" is known analytically and w" and O (k) are nonzero only at the irregular points. The errors are uni-
form. Smereka shows how to write w" in terms of a level set function; see (45) and Section 7 in [10].

To prove that (2) is valid, we may assume f'is nonzero only in a neighborhood of I', as well as smooth. We
begin by writing

/Fde:/Qfépdx:/Qngdx:/QgAfdx. (8)

(This could be rewritten in an equivalent way using the jump conditions (5) rather than Jy).
Next we replace the last integral by a sum over grid points. We check that

/gAfdx > glih)(Af)(ih)k* + O(K*) (9)
iheQy,
by comparing the integral over the cell centered at i4 with the term in the sum. If the cell intersects I', the error
in the integrand is O(h), since g is continuous and has bounded derivative. There are O(h*) such cells, con-
tributing a total error of O(h - h* - h~2) = O(h?). On each remaining cell the error in the integral is O(h* - 1),
since g and Af are C*. The total error for these cells is O(h* - * - h>) = O(h*) and the claim (9) is verified.
We now have

[ ras- S e+ 0 = S e’ + O (10)
r



J.T. Beale!Journal of Computational Physics 227 (2008) 2195-2197 2197

since 4, = Af + O(h?). We can sum by parts and use (7) to obtain

> gt = (4g)fi’ = 3 (w4 Op(h) + O(R) ) 1’ (11)

o Q

The O(h) error contributes a term of order 4 - #* - A2 = h* and thus is negligible, as is the other error inside.
Combining (10) and (11), we arrive at the conclusion (2).

The fact that the integral is accurate to O(4?) although t* = O(%) on the irregular points is related to a gain
in accuracy that has long been noted for solutions of elliptic problems using the methods of [3-5,7,8,13].
Proofs of this phenomenon have been given in [1,4,9] and elsewhere. Closely related to the Green’s function
g solving (4) is the discrete version g”" which solves

Ahgh :Wh in Q;” g:o on th (12)

In fact g — g = O(h?*) uniformly; this follows from analytical results in [1,9].
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